Feature vector transformation using independent component analysis and its application to speaker identification
نویسندگان
چکیده
This paper presents a feature parameter transformation method using ICA (independent component analysis) for text independent speaker identification of telephone speech. ICA is a signal processing technique which can separate linearly mixed signals into statistically independent signals. The proposed method transforms them into new vectors using ICA assuming that the cepstrum vectors of the telephone speech collected from various kinds of channel conditions are linear combinations of some characteristic functions with random noise added. The performance of the proposed method was compared to the original cepstrum for the HMM-based speaker identification system. Experiments were done in equal and different channel conditions on SPIDRE, a real telephone speech database for text independent speaker identification. The identification rates increased from about 1 13% most cases, so it was confirmed that the proposed method is effective for speaker identification systems, and more effective in adverse environments.
منابع مشابه
Application of LDA to speaker recognition
The speaker recognition task falls under the general problem of pattern classification. Speaker recognition as a pattern classification problem, its ultimate objective is design of a system that classifies the vector of features in different classes by partitioning the feature space into optimal speaker discriminative space. Linear Discriminant Analysis (LDA) is a feature extraction method that...
متن کاملNovel Approach to Text Independent Speaker Identification
In this paper, we propose Speaker Identification using two transforms, namely Kekre’s Transform and Kekre’s Wavelet Transform. The speech signal is spoken by a particular speaker is converted into a spectrogram by first taking 25 or 50% overlapping frames between consecutive sample vectors and arranged in the form of matrix. In order to improve the performance, intially log of matrix is taken a...
متن کاملGmm Based on Local Robust Pca for Speaker Identification
ABSTRACT: To solve the problems of outliers and high dimensionality of training feature vectors in speaker identification, in this paper, we propose an efficient GMM based on local robust PCA with VQ. The proposed method firstly partitions the data space into several disjoint regions by VQ, and then performs robust PCA using the iteratively reweighted covariance matrix in each region. Finally, ...
متن کاملIntelligent System for Speaker Identification using Lip features with PCA and ICA
Biometric authentication techniques are more consistent and efficient than conventional authentication techniques and can be used in monitoring, transaction authentication, information retrieval, access control, forensics, etc. In this paper, we have presented a detailed comparative analysis between Principle Component Analysis (PCA) and Independent Component Analysis (ICA) which are used for f...
متن کاملPhoneme Classification over the Reconstructed Phase Space Using Pca
Although isolated phoneme classification using features from time-domain phase space reconstruction has been investigated recently, the best representation of feature vectors for the discriminability over phoneme classes is still an open question. This paper applies Principal Component Analysis (PCA) to feature vectors from the reconstructed phase space. By using PCA projection, the basis of th...
متن کامل